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Abstract. Starting with a soft-ratchet model of slow dynamics inlim@ar resonant response of

sedimentary rocks we predict the dynamical realizatioanafpoint memory in resonating bar

experiments with a cyclic frequency protocol. The effeetdescribe and simulate is defined as
the memory of previous maximum amplitude of alternatingstamd manifested in the form of

small hysteretic loops inside the big hysteretic loopghmnresonance curve. It is most clearly
pronounced in the vicinity of bar resonant frequency.s€hbeoretical findings are confirmed

experimentally.

INTRODUCTION

Sedimentary rocks are prototypical of a class of nasethat exhibit unusual
elastic properties. In particular, they possess hyssemed discrete memory [1-4]. For
exploration of their equation of state, both quasistdti-3] and dynamic
measurements [4, 5] have been used. Dynamic experimentscomain more
information than quasi-static measurements. Howevelesaription of the dynamic
processes, and in particular, finding the equation of stademore difficult problem.

In modeling experiments on the longitudinal vibrationadonance of bar-
shaped sedimentary rocks, we have proposed a closed sy$tequations for
describing these processes [6-8]. Moreover, we have prédicte phenomenon of
hysteresis with end-point memory in its essentially dyisal hypostasis [7]. In this
paper we present recent experimental measurements tifiatncabove prediction.

PRINCIPAL PHYSICAL FOUNDATIONS OF MODEL

We here restrict the presentation of the theory tuylyts principal physical
foundations and send the reader to our recent papers fi&, détails. First of all we
believe that the number of intergrain defects detersnihe strength properties of
consolidated medium. On the other hand, during dynanoealing the number of
defects in a sample is changed (increased or decreatsedhgecontinuously toward
its dynamically driven would-be equilibrium value. Arguingabstantial difference
between the typical rates of defect creation andctlefanihilation, we come to a
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physical mechanism that breaks the symmetry of sysesmonse to an alternating
external drive and acts as a sort of soft ratchetakyleliode. The formalization of
these and other basic ideas gives rise to a modelns)§t@] that enables us to
describe correctly a wide class of experimental faaiscerning the unusual
dynamical behaviour of such mesoscopically inhomogeneod&ame sandstones [4-
8], as well as to forecast a new essentially dynarfaocen of end-point memory [7].

DYNAMICAL REALIZATION OF END-POINT MEMORY::
THEORETICAL PREDICTION

The question of whether an effect similar to the endtp@liscrete) memory
that is observed in quasi-static experiments with a iphyteversed loading-
unloading protocol [1-3] could also be seen in resonatimgelperiments with a
multiply-reversed frequency protocol has been risefjiafid firstly was examined
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FIGURE 1. Manifestation of end-point memory in dynamic responsth va multiply-reversed
frequency protocolR is the response amplitudk, is the length of the bar.

theoretically. The graphical results of this investigatare presented in Figure 1 (see
also Fig. 16 in [7], where the model constants are yiveme of the features of
dynamical end-point memory, defined here as the mewbtlye previous maximum
amplitude of alternating stress, is seen as small lowide the big loop. The starting
and final points of each small loop coincide, which isidgpof end-point memory.
According to our theory when producing an extremely smaé#r loop on conditioned
(solid-line) curves the chance to find it closed dinfieis in proportion to its linear
size, being lower on the downward going curve and higherhenupper part of
upward going curve. The reason for such behavior is theeagis of a threshold stress
amplitude (depending on previous history) that must be surmduntorder for the
kinetics of the slow subsystem to be switched frorfecteannihilation at lower
amplitudes to defect creation at higher amplitudes. rHsisiction can be substantially
relaxed provided the linear size of the inner loop becamagparable with that of the
big outer loop. In contrast, when dealing with unconditib@ashed-line) curve, a
closed inner loop can be produced anywhere without any r@sisiain its smallness
(not shown).
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FIGURE 2. The low frequency sides of experimental resonance ctové®ntainebleau sandstone.
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FIGURE 3. The low frequency sides of the resonance curves ctdular Berea sandstone.
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DYNAMICAL REALIZATION OF END-POINT MEMORY::
EXPERIMENTAL CONFIRMATION

Following the theoretical results, shown in Fig. 1, peeformed experimental
measurements to verify our prediction. The sample barankontainebleau sandstone

and the drive level produced a calculated strain of aB@l®™® at the peak. Figure 2
shows the low frequency sides of resonance cuhegscorrespond to the frequency
protocol given on inset of Fig. 2. We clearly shattthe beginning and end of each
inner loop coincide, i.e., a major feature of elmdapmemory.

The experimental results for the Fontainebleaulsame shown in Fig. 2 were
simulated by using existing model equations (iniclgda state equation) [6-8] and
corrected (as compared with Fig. 1) constants fereB sandstone. We note the good
qualitative agreement between the experimental. (Bicand the theoretical (Fig. 3)
curves suggesting that our physical model is apgatgpfor both sandstones.
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